
FORTRAN 90 Ornztein-Zernike solver

Patrick B Warren, Unilever R&D Port Sunlight (v1.4, October 2013)

1 Introduction

The fortran 90 module oz_mod.f90 implements an Ornstein-Zernike solver
for up to three species of possibly charged particles, returning both structural
and thermodynamic information. The closures currently implemented are the
RPA (equivalent to MSA for soft potentials), EXP, and the HNC. The code
implements both the Ng acceleration scheme and the Ng splitting method
for handling long range forces [1]. It is based on an original HNC code
developed by Lucian Anton, modified for DPD by Andrey Vlasov with help
from Lucian and Andrew Masters. The code was later converted by Patrick
Warren to use the open source libraries fftw and lapack, and rewritten
to be compatible with the fortran-python interface generator f2py. The
present code retains its fortran origins to take advantage of the concise
fortran 90 array syntax whilst maximising speed.

The DPD dependence is confined to routines which specify the potential
and the code could be used for other potentials with minor modifications. An
example of this is the ultrasoft restricted primitive model (URPM). Further
technical background can be found in Hansen and McDonald [4], Kelley and
Montgomery Pettitt [2], and Vrbka et al. [3].

Vrbka provides a multicomponent integral equation solver called ‘pyOZ’,
implemented entirely in python [3]. There are some differences with the
present approach: the Ornstein-Zernike relation is normalised slightly differ-
ently, a conjugate gradient method is used to accelerate convergence, and
pyOZ provides other closures in addition to the ones provided here.

2 Mathematical background

2.1 Single component HNC

We suppose that the interaction between a pair of particles is given by the
potential v(r). We introduce the following quantities [4]: the pair distribu-
tion function g(r), the total correlation function h(r) ≡ g(r) − 1, the direct
correlation function c(r) defined by the Ornstein-Zernike relation below, and
the indirect correlation function e(r) ≡ h(r) − c(r). Note that the indirect
correlation function is called γ(r) by Vrbka et al. [3] and b(r) by Hansen and

1

McDonald [4]. We also introduce the Fourier transforms, e. g.

h̃(k) =

∫
d3r e−ik·r h(r) , (1)

which simplifies to the Fourier-Bessel transform

h̃(k) =
4π

k

∫ ∞
0

dr sin(kr) r h(r) , (2)

and

h(r) =

∫
d3k

(2π)3
eik·r h̃(k) , (3)

which simplifies to

h(r) =
1

2π2r

∫ ∞
0

dk sin(kr) k h̃(k) . (4)

In terms of the Fourier transforms the Ornstein-Zernike (OZ) relation is

h̃(k) = c̃(k) + ρ h̃(k) c̃(k) (5)

where ρ is the density. This confirms the relevance of the standard choice of
normalisation of the 3d Fourier transform pair which puts the factor 1/(2π)3

into the back transform. The OZ relation can be rearranged to

h̃(k) =
c̃(k)

1− ρc̃(k)
(6)

(c. f. Eq. (3.5.13) in Ref. [4]). The hyper-netted chain (HNC) closure is
defined in real space and is

g(r) = exp[−βv(r) + h(r)− c(r)] (7)

(c. f. Eq. (4.3.19) in Ref. [4]) where β = 1/kBT . It amounts the neglect
of the bridge diagrams. For hard spheres HNC is known to be inferior to
Percus-Yevick, but for soft potentials like DPD it generally gives excellent
results.

To obtain the algorithm implemented in the code we rewrite Eqs. (6) and
(7) in terms of c(r) and e(r). The OZ relation becomes

ẽ =
c̃

1− ρc̃
− c̃ (8)

and the HNC closure becomes

c = exp[−βv + e]− e− 1 . (9)

2

The algorithm is as follows. We start with some guess for the direct cor-
relation function c(r). We Fourier transform this to c̃(k) and solve the OZ
relation in Eq. (8) to get the indirect correlation function (in reciprocal space)
ẽ(k). We Fourier back-transform to get e(r) and plug this into the HNC clo-
sure in the form of Eq. (9) to get a new direct correlation function c(r). This
cycle is iterated until c(r) and e(r) converge to a self-consistent solution pair.
A direct approach like this is usually numerically unstable so in the Picard
scheme we mix a little of the new c(r) into the old c(r), and iterate until
we converge to a solution. In the Ng acceleration scheme we keep track of
the convergence trajectory and use this to accelerate convergence to the solu-
tion. The details of the Ng scheme will not be described here, rather we point
the interested reader to Ref. [1] and the code itself. The initial trajectory
for the Ng scheme is generated by a few Picard iterations. Some possible
initial choices for the direct correlation function c(r) are zero, −βv(r) and
exp[−βv(r)] − 1. Any of these will do in principle but the initial rate of
convergence may differ.

Now we describe Ng’s splitting method for handling long range forces.
We partition the interaction potential into a short range part and a long
range part,

v(r) = v′(r) + vL(r) . (10)

It is generally accepted that c(r) ∼ −βvL(r) for r → ∞ so we make this
explicit by partitioning both the direct and indirect correlation functions,

c(r) = c′(r)− βvL(r) , e(r) = e′(r) + βvL(r) . (11)

These are taken to provide the definitions of c′(r) and e′(r). We rewrite the
OZ relation and the HNC closure in terms of these,

ẽ ′ =
c̃ ′ − βṽL

1− ρ(c̃ ′ − βṽL)
− c̃ ′ (12)

and
c′ = exp[−βv′ + e′]− e′ − 1 . (13)

The first of these requires that we know the Fourier transform of the long
range part of the potential. The main advantage of the Ng split is that
c′(r) and e′(r) are now genuinely short-ranged so the numerical behaviour is
much better, certain thermodynamic integrals are guaranteed convergence,
and the expected asymptotic behaviour of c(r) is explicitly incorporated.
The numerical solution scheme based on Eqs. (12) and (13) goes through as
before. The initial choices for c′(r) are replicated from above with v replaced
by v′.

3

2.2 Multicomponent HNC

Now we turn to the multicomponent problem. The pair functions become for
example gµν(r), et c., and the problem is specified by the interaction potential
vµν(r) and the species densities ρµ. The total density is ρ =

∑
µ ρµ and the

species mole fractions are xµ = ρµ/ρ. We again split the potential into short
and long range contributions,

vµν(r) = v′µν(r) + vL
µν(r) (14)

where typically vL
µν(r) incorporates the long range part of the charge inter-

actions. Often the long range part sits on the symmetry point (SP) where

vL
µν(r) = zµzνv

L(r) (SP) (15)

in which zµ is the valency and vL(r) is the interaction potential between unit
charges of the same sign. However we will not assume that vL

µν(r) meets the
SP condition. As above we define c′µν = cµν + βvL

µν and e′µν = eµν − βvL
µν .

The multicomponent HNC closure becomes

c′µν = exp[−βv′µν + e′µν]− e′µν − 1 . (16)

To derive the OZ relation in a usable form we start from the multicomponent
analogue of Eq. (5),

h̃µν = c̃µν + ρ
∑

λ xλ c̃µλ h̃λν . (17)

We write this as a matrix relation, introducing R as a diagonal matrix with
entries ρµ = ρxµ,

H̃ = C̃ + C̃ ·R · H̃ . (18)

Introducing next C̃ ′ = C̃ + βŨL and Ẽ ′ = Ẽ − βŨL, and rearranging, gives
eventually

Ẽ ′ = [I − (C̃ ′ − βŨL) ·R]−1 · [(C̃ ′ − βŨL) ·R · C̃ ′ − βŨL] . (19)

The solution scheme is essentially as before. Given an initial guess for c′µν(r)
we Fourier transform, evaluate the matrix expression in Eq. (19), and Fourier
back-transform to obtain e′µν(r). We substitute this into the HNC closure
in Eq. (16) to obtain a new guess for c′µν(r). The cycle is iterated to con-
vergence and in practice a few Picard iterations are used to pump-prime a
multicomponent version of the Ng acceleration scheme.

Given a converged solution pair (c′µν , e
′
µν), the total correlation functions

can be evaluated from

hµν(r) = c′µν(r) + e′µν(r) (20)

4

(note that βvL
µν cancels). The pair functions are given by gµν = δµν + hµν .

For the partial structure factors, there is a choice of normalisation. In
the present code the structure factors are perhaps unusually defined to be

Sµν(k) = ρµδµν + ρµρν h̃µν (21)

where h̃µν = c̃ ′µν + ẽ ′µν (again, βvL
µν cancels); the Fourier transforms c̃ ′µν and

ẽ ′µν are available as a byproduct of solving the OZ relation. The unusual
choice of normalisation is made to facilitate the calculation of the charge-
charge and density-density structure factors. With this choice the structure
factors obey Sµν(k)→ ρµδµν as k →∞. An alternative (and more popular)
normalisation, for which Sµν(k)→ δµν as k →∞, is obtained from the above
expression by multiplying by (ρµρν)

−1/2.

2.3 Multicomponent RPA

The random phase approximation (RPA) is equivalent to the mean spherical
approximation (MSA) for soft potentials. The RPA closes the Ornstein-
Zernike equations by the choice cµν(r) = −βvµν(r). This is in fact one of
the choices for initialising the HNC solver. Given the HNC machinery, the
implementation of the RPA is almost completely trivial and comprises a
single round trip through the OZ solver starting from c′µν(r) = −βv′µν(r).

2.4 Multicomponent EXP

The EXP approximation is a straightforward development of the RPA in
which the real space total correlation functions are replaced by

hµν(r)→ exp[hµν(r)]− 1 . (22)

This breaks possible symmetries such as h++ = −h+− and ensures that
hµν(r) > −1 which is not always satisfied by the RPA. In practice EXP
can be nearly as good as HNC and extends to state points where HNC
doesn’t have a solution. Since the EXP approximation is defined as an action
on the total correlation functions in real space, a round trip through the
OZ relation is required to compute the corresponding direct and indirect
correlation functions. To do this we rewrite the OZ relation in Eq. (18) as

C̃ ′ = H̃ · (I +R · H̃)−1 + βŨL . (23)

Once this has been implemented, e′µν = hµν − c′µν follows by subtraction.

5

2.5 Thermodynamics

The above section completely specifies the HNC closure for the integral equa-
tion problem for multicomponent system. We provide here the suite of ther-
modynamic quantities which can be evaluated from the converged solution
pair (c′µν , e

′
µν) (or indeed for the RPA or EXP solutions). The first is the

so-called virial route compressibility factor

βp

ρ
= 1− 2π

3

∑
µν ρxµxν

∫ ∞
0

dr r3 ∂(βvµν)

∂r
gµν(r) (24)

(c. f. Eq. (1.2) in Ref. [3]). In practice we write this as

βp

ρ
= 1− 2π

3

∫ ∞
0

dr r3
∂(
∑

µν ρxµxν βvµν)

∂r
+
∑

µν ρxµxνt
V
µν (25)

where

tVµν = −2π

3

∫ ∞
0

dr r3
∂(βv′µν + βvL

µν)

∂r
(c′µν + e′µν) (26)

The second term in Eq. (25) is the result for gµν = 1 and is the mean-field
contribution; for many applications it can be evaluated explicitly. Under the
SP condition the contribution from vL

µν to the mean field term vanishes since
charge neutrality implies

∑
µν ρxµxνv

L
µν ∝ vL(

∑
µ ρµzµ)2 = 0. The third term

in Eq. (25) is the correlation correction.
Next up is the compressibility itself which we write as

∂(βp)

∂ρ
= 1−

∑
µν ρxµxνt

C
µν (27)

where

tCµν = 4π

∫ ∞
0

dr r2 (c′µν(r)− βvL
µν) (28)

(c. f. Eq. (18) in Ref. [3]; the compressibility is not to be confused with the
above compressibility factor), In terms of this, the isothermal compressibility
is χT = [ρ(∂p/∂ρ)]−1. The contribution from vL

µν can also often be evaluated
analytically and vanishes under the SP condition by the same argument as
above. Obviously the compressibility can be integrated along an isotherm
to obtain an alternative expression for the pressure. This is the so-called
compressibility route to the equation of state.

The next quantity of interest is the internal energy U . Per particle, the
excess internal energy is

U ex

N
= 2π

∑
µν ρxµxν

∫ ∞
0

dr r2 vµν(r) gµν(r) (29)

6

(c. f. Eq. (2.5.20) in Ref. [4]). Again this can be split into a mean field term
and a correlation correction,

βU ex

N
= 2π

∫ ∞
0

dr r2 (
∑

µν ρxµxν βvµν) +
∑

µν ρxµxνt
E
µν (30)

where

tEµν = 2π

∫ ∞
0

dr r2 (βv′µν + βvL
µν) (c′µν + e′µν) . (31)

An integration by parts shows that the mean field term here is identical to
that for the compressibility factor,

2π

∫ ∞
0

dr r2 βvµν = −2π

3

∫ ∞
0

dr r3 ∂(βvµν)

∂r
. (32)

In the sequel I shall quote results only for the first of these. The excess
internal energy density (per unit volume) is U ex/V = ρ × (U ex/N). The
equation of state can be derived from the internal energy and this is the
so-called energy route.

Last, and only valid for the HNC closure, are thermodynamic inte-
grals for excess chemical potentials. The relevant result is

βµex
µ = 4π

∑
ν ρxν

∫ ∞
0

dr r2 [1
2
hµν(r) eµν(r)− cµν(r)] (33)

(c. f. Eq. (20) in Ref. [3]). We write this as βµex
µ =

∑
ν ρxνt

M
µν where

tMµν = 4π

∫ ∞
0

dr r2 [1
2

(c′µν + e′µν)(e
′
µν + βvL

µν)− c′µν + βvL
µν] . (34)

The contribution from vL
µν (the last term) can usually be evaluated analyti-

cally and is the same as that appearing in the compressibility (to within an
overall sign). These expressions, valid only for HNC, offer a fourth route to
the equation of state (the chemical-potential route).

In HNC both the virial route pressure and the chemical potentials cor-
respond to a certain free energy. Since they are compatible in this way, the
excess free energy density follows from

βF ex/V = β
∑

µ ρxµµ
ex
µ − βp+ ρ (35)

where the pressure is calculated from the virial route compressibility factor.

7

2.6 DPD potential

The HNC code contains routines which specify a multicomponent potential
for dissipative particle dynamics (DPD) with Gaussian charges. The poten-
tial in this case consists of short range and long range contributions which
can be mapped exactly to the Ng split. The short range part is

v′µν(r) =

{
1
2
AµνkBT (1− r/rc)2 r < rc

0 r ≥ rc
. (36)

This is a conventional choice, depending on a dimensionless symmetric re-
pulsion amplitude matrix Aµν and cut off beyond a distance rc.

Unlike the short range part there is no consensus on the best choice for
the long range interaction although the differences can always be adsorbed
into a redefinition of the short range potential. The first choice of Gaussian
charges can be supported for a range of practical reasons [9]. The Gaussian
charges have size ∼ σ and a density distribution (2πσ2)−3/2 exp(−r2/2σ2).
The corresponding interaction satisfies the SP condition and is given by

vL
µν(r) = zµzνv

L(r) , vL(r) =
lBkBT

r
erf
(r

2σ

)
(37)

where lB is the coupling strength (the Bjerrum length). The precise definition
of σ is made to simplify the Fourier transform (see below).

For use with the above expressions, we need the derivative of both parts
of the potential, and the Fourier transform of the long range part. These are

∂(βv′µν)

∂r
=

{
−(Aµν/rc)(1− r/rc) r < rc

0 r ≥ rc
(38)

∂(βvL)

∂r
= − lB

r2
erf
(r

2σ

)
+

lB
rσ
√
π
e−r

2/4σ2

, (39)

and

βṽL(k) =
4πlB
k2

e−k
2σ2

. (40)

The mean field contributions to the virial route pressure and energy are given
by (see also Eq. (32))

2π

∫ ∞
0

dr r2 (
∑

µν ρxµxν βvµν) =
πr3

c

30

∑
µν ρxµxνAµν . (41)

Because of the SP condition, the contribution from vL vanishes from this,
and also vanishes from the mean field contributions to the compressibility
and chemical potentials.

8

This DPD model depends on the dimensionless repulsion amplitude ma-
trix Aµν , the ratios lB/σ and σ/rc, and the dimensionless density ρr3

c . In
these terms rc = 1 is often used as the fundamental length scale. The ratio
lB/σ plays the role of an inverse effective temperature for the Coloumbic part
of the potential.

The above is the Gaussian charge case and is the default. If Bessel charges
are selected the charge distribution becomes K1(r/σ)/2π2σ2r and the expres-
sions change to

βvL(r) =
lB
r

(1− e−r/σ) , (42)

∂(βvL)

∂r
= − lB

r2
(1− e−r/σ) +

lB
rσ

e−r/σ , (43)

βṽL(k) =
4πlB

k2(1 + k2σ2)
. (44)

Note that σ here is chosen to match the second moment of the charge distri-
bution for the Gaussian case.

Another alternative is linear charge smearing proposed by Groot [5]. In
this case the charge distribution is (3/πR3)(1 − r/R) for r < R, vanishing
for r > R. This gives rise to an interaction potential in reciprocal space

βṽL(k) =
4πlB
k2

(24− 24 cos kR− 12kR sin kR

k4R4

)2

. (45)

A closed form expression in real space is not available, hence is not imple-
mented in the code. This means that the thermodynamics is not available in
this case, though the HNC solution goes through since this only requires the
reciprocal space potential. The term in large brackets is the charge density
in reciprocal space. Matching the second moment of the charge distribu-
tion shows that σ = R

√
2/15. This is implemented in the code (i. e. σ is

calculated from R) if this charge type is selected.
A fourth alternative is an exponential smearing proposed by González-

Melchor et al. [6]. In this case the charge density is (1/πλ3)e−2r/λ. The
reciprocal space interaction is

βṽL(k) =
4πlB

k2(1 + k2λ2/4)4
. (46)

The matching condition here is conveniently λ = σ, hence the code uses σ
rather than a separately defined λ. Although a closed form expression for
the real space potential is available, it is not implemented in the code, and
as in the preceding case, the thermodynamics is not available.

9

2.7 Softened URPM potential

Another potential provided by the code at present is for the URPM in which
the unlike pair potential is artificially softened. The standard URPM (an
equimolar mixture of Gaussian charges) is given by the DPD potential above
with zµ = ±1 and Aµν = 0. There are two ways the softened version can
be implemented. The first way is to work purely in reciprocal space. It is
important to note that this takes the model off the SP condition expressed in
Eq. (15). In this approach the short range part v′µν = 0, and the long range
part is

vL
11 = vL

22 =
lBkBT

r
erf
(r

2σ

)
vL

12 = − lBkBT

r
erf
(r

2σ′

)
(47)

where typically σ′ > σ (in the case σ′ = σ we have the original URPM which
is also contained in the DPD potential described above). The potential in
reciprocal space and the derivatives follow mutatis mutandis from the DPD
case. In the alternative approach we retain the SP condition so that the long
range part is given by Eq. (37) and the short range part is

v′12 ≡ −∆v12 = − lBkBT

r
erf
(r

2σ′

)
+
lBkBT

r
erf
(r

2σ

)
(48)

(obviously, v′11 = v′22 = 0). We define ∆v12 as the potential that should be
added to the softened URPM, to recover the standard URPM. This is so that
we can use the softened version as a reference fluid.

For both routes the mean field contributions to the virial route pressure
and energy are non-zero only for the unlike pairs. We can evaluate them
with v′12 given by Eq. (48)

−2π

3

∫ ∞
0

dr r3 ∂(βv′12)

∂r
= 2π

∫ ∞
0

dr r2 βv′12 = 2πlB(σ′2 − σ2) . (49)

If we take the first, purely reciprocal space route, the failure to satisfy the
SP condition means the compressibility and chemical potentials need to take
account of vL

µν . This leads to the long range contributions

−tC,L12 = tM,L
12 = 4π

∫ ∞
0

dr r2 βv′12 = 4πlB(σ′2 − σ2) . (50)

These should not be included if we follow the second route.
Finally if we use the softened URPM as a reference fluid in the Wertheim

approach we need to evaluate the integral

∆12 = 4π

∫ ∞
0

dr r2 g12(r) [exp(−β∆v12)− 1] (51)

10

where the pair distribution function is that of the reference fluid. A related
integral is in the first order perturbation theory F = F0 + 〈∆U〉0 where

β〈∆U〉0
V

=
πρ2

2

∫ ∞
0

dr r2 g12(r) β∆v12 . (52)

3 Implementation notes

Most of the code is self-expanatory, given the above mathematical back-
ground. Correlation functions in the real space domain are discretised in an
array of size i = 1 . . . n− 1 with a spacing δr so that ri = δr × i. Usually one
choses δr to be a small fraction of the relevant length scale (e. g. δr = 0.01rc)
and nδr to be some large multiple of the same (e. g. nδr ≈ 40rc). The actual
value of n can be chosen to optimise the fast Fourier transform algorithm,
for instance n = 4096. The concomitant functions in the reciprocal space
domain are discretised in an array of size j = 1 . . . n − 1 with a spacing
δk ≡ π/(nδr) so that kj = δk × j. The array size n− 1 and the value δk are
fixed by the demands of the fast Fourier transform algorithm.

The implementation of the Fourier transforms is as follows. A discrete
version of Eq. (2) is

h̃j =
2πδr
kj
× 2

∑n−1
i=1 rihi sin(πij/n) (53)

where j = 1 . . . n − 1. The quantity 2
∑n−1

i=1 rihi sin(πij/n) is computed
by calling the fftw routine RODFT00 on rihi. From the fftw documena-
tion, this specific routine works best when the array length is of the form
2a3b5c7d11e13f − 1 where e + f is either 0 or 1 and the other exponents are
arbitrary (this means n should be of the form of the first term since the array
length is n − 1). For the back-transform the corresponding discrete version
of Eq. (4) is

hi =
δk

(2π)2ri
× 2

∑n−1
j=1kjh̃j sin(πij/n) (54)

The quantity 2
∑n−1

j=1 kjhj sin(πij/n) is computed by calling RODFT00 on kjhj.
The code is limited to a maximum of three components and an encoding

maps species pairs to an integer index according to Table 1. The Ng ac-
celeration scheme is implemented by keeping track of a number of previous
iterations (typically 6), recycling the storage. Thus the main functions c′µν
and e′µν are 3-dimensional arrays: the first dimension is the spatial discretisa-
tion, the second is the species pair index, and the third is the Ng trajectory
index. The thermodynamic quantities in section 2.5 are all evaluated by

11

species pair: (1,1) (1,2) (2,2) (1,3) (2,3) (3,3)
fortran 90 index: 1 2 3 4 5 6

python index: 0 1 2 3 4 5

Table 1: Encoding species pairs into a unique index.

standard trapezium rules, applied to the integrals given therein. If scripting
with python note that the python array index is one less than the fortran
array index (c. f. Table 1), and this conversion is seamlessly and invisibly
implemented in f2py.

4 Usage notes

The code is presented as a suite of functions in a fortran 90 module.
Thus it typically needs a driver code, which can be written in fortran 90
or in python with the use of f2py (see examples below). Thermodynamic
integration schemes, for example the compressibility route to the equation
of state, are not implemented here. Rather it seems better to put these into
the driver routines, as the philosophy has been to make the solution of the
basic integral equation problem as fast and robust as possible.

4.1 Routines

• initialise – Allocate all arrays given the number of components
ncomp, the number of real space points ng, and the length of the Ng
trajectory nps. Initialise the fftw plan for fast Fourier transforms.
This initialise routine is typically called once, at the start, after the
values of ncomp, ng, nps, and deltar have been settled.

• dpd_potential(charge_type) – Sets up the DPD potential described
in section 2.6. This routine can be called multiple times. The pa-
rameter indicates Gaussian charges (charge_type = 1), Bessel charges
(charge_type = 2), linear charges (charge_type = 3), or exponential
charges (charge_type = 4). The last two cases are incomplete in the
sense that the thermodynamics is not calculated correctly.

• soft_urpm_potential(use_ushort) – Sets up the softened URPM
potential described in section 2.7. This routine can be called multiple
times. It checks that ncomp = 2 and forces z1 = 1 and z2 = −1. The
parameter indicates whether the potential should be a pure long range

12

reciprocal space part which then no longer sits at the SP in Eq. (15)
(use_ushort = 0), or a long range reciprocal space part which satisfies
Eq. (15) plus a short range real space correction (use_ushort = 1).

• hnc_solve – Calculate the HNC solution. Specifically, initialise c′µν if
the flag cold_start is set, take enough Picard steps to pump-prime
the Ng acceleration method, then attempt to converge to a solution.
This is the basic HNC solver routine and contains appropriate calls
to oz_solve, picard_method, ng_method and conv_test below. If
successful (and the flag auto_fns is set) then the three make_* func-
tions are also called, resulting in a complete solution to the prob-
lem. The function hnc_solve should be called after initialise and
dpd_potential, and may be called multiple times with different densi-
ties for a fixed potential, or with a different potential if dpd_potential
is called in between. In these subsequent calls, the existing c′µν is used
as a starting point unless the flag cold_start is reset.

• rpa_solve – Calculate the RPA solution. This involves only a single
round trip through oz_solve from a specified start and does not require
initialisation or a convergence criterion. Provided the flag auto_fns is
set, the three make_* functions are also called. Like the HNC routine
rpa_solve should be called after initialise and dpd_potential, and
may be called multiple times with different densities for a fixed poten-
tial, or with a different potential if dpd_potential is called in between.

• exp_solve – Calculate the EXP solution. This involves first solving
the RPA then implementing Eqs. (22) and (23) (the latter involves
a call to oz_solve2). Provided the flag auto_fns is set, the three
make_* functions are also called. Like the HNC routine exp_solve

should be called after initialise and dpd_potential, and may be
called multiple times with different densities for a fixed potential, or
with a different potential if dpd_potential is called in between.

• oz_solve – Solve the OZ relation in the form of Eq. (19) to find e′µν
from c′µν (as a byproduct, this generates ẽ ′µν and c̃ ′µν).

• oz_solve2 – Solve the OZ relation in the form of Eq. (23) to find e′µν
and c′µν from hµν (and as a byproduct generate ẽ ′µν and c̃ ′µν).

• picard_method – Solve the HNC closure to find c′µν from e′µν , and take
a Picard step in the sense of mixing a fraction alpha of the new c′µν
with the old c′µν .

13

• ng_method – Solve the HNC closure to find a new c′µν given e′µν , but
using the Ng acceleration scheme.

• conv_test – Check HNC convergence by calculating the difference
(saved in error) between the current and immediately preceeding c′µν .

• make_pair_functions – from Eq. (20). The choice to present hµν
rather gµν is made because there may be interest in the asymptotic
behaviour of hµν → 0 as r → ∞, and it is assumed the user can add
‘1’ to get the pair distribution functions.

• make_structure_factors – from Eq. (21).

• make_thermodynamics – everything in section 2.5, and includes the
Wertheim integral in Eq. (51) if a softened potential was used.

• write_params – Write out basic information.

• write_thermodynamics – Write out all thermodynamic quantities, as-
suming make_thermodynamics has been called either explicitly or im-
plicitly.

Note that the three make_* routines are independent and can be called in
any order.

4.2 User parameters

• ncomp – The number of component species, either 1 (default), 2, or 3.

• ng – The real space grid size, n, usually a power of 2 (default 4096).

• nps – The length of the Ng trajectory (usually safe to leave at the
default 6).

• npic – The number of Picard steps to pump-prime the Ng acceleration
scheme (usually safe to leave at the default 6, but should be ≥ nps).

• maxsteps – maximum number of steps to take before giving up on
convergence (usually safe to leave at default 100).

• verbose – Flag (0 or 1) to print diagnostics (default 0).

14

• cold_start – Flag (0 or 1) to indicate that that the solver should
execute a cold start by initialising c′µν ; this flag is by default only set
for the first call to hnc_solve since it is often the case that a later call
can re-use the current solution as the initial guess. The flag can be
re-set by the user for subsequent calls.

• start_type – In a cold start initialise c′µν = 0 (start type 1), c′µν =
−βv′µν (start type 2), or c′µν = exp(−βv′µν)− 1 (start type 3, default).
Usually safe to leave at default.

• auto_fns – Flag (0 or 1) if set (default) the integral equation solver
calls all the make_* routines on exit. Since these routines are relatively
inexpensive compared to the calculating the solution, one would usually
leave this flag set.

• deltar – The real space grid spacing δr (default 0.01).

• alpha – Fraction of new solution in Picard method (usually safe to
leave at default 0.2).

• tol – Error tolerance for claiming convergence (usually safe to leave at
default 10−12).

• rc – DPD repulsion range rc (default 1.0).

• lb – Coulomb coupling strength lB (default 0.0)

• sigma – charge size σ (default 1.0).

• sigmap – charge size σ′ (default 1.0), used for the softened URPM
potential.

• rgroot – linear smearing range R (default 1.0). Note that the code
sets sigma equal to R

√
2/15 if this charge type is selected.

• rho(:) – An array of size ncomp where rho(mu) is the density ρµ. All
entries default to zero after a call to initialise.

• z(:) – An array of size ncomp where z(mu) is zµ. All entries default to
zero after a call to initialise.

• arep(:, :) – An array of size ncomp×ncomp where arep(mu, nu)

is Aµν . Note that only elements above the diagonal are used, i. e.
arep(1,2), arep(1,3), and arep(2,3). Elements below the diago-
nal are ignored. All entries default to zero after a call to initialise.

15

4.3 Outputs

• deltak – The reciprocal space grid spacing δk = π/(nδk), fixed by the
needs of the fast Fourier transform algorithm. Available after a call to
initialise.

• hr(:, :, :) – An array containing the total correlation functions
hµν(r) as in Eq. (20). Specifically hr(i, mu, nu) contains hµν(ri)
where ri = i × δr for i = 1 . . . n − 1. The values at r = 0 can be
obtained by linear extrapolation [2]. These arrays are available after
a call to make_pair_functions (which is done automatically by the
solver routines unless auto_fns is turned off).

• sk(:, :, :) – An array containing structure factors Sµν(k) as in
Eq. (21). Specifically sk(j, mu, nu) contains Sµν(kj) where kj =
j × δk for j = 1 . . . n − 1. These arrays are available after a call
to make_structure_functions (which is done automatically by the
solver routines unless auto_fns is turned off).

• r(:) – The array r(i) contains ri = i×δr for i = 1 . . . n−1. Available
after a call to initialise.

• k(:) – The array k(j) contains kj = j×δk for j = 1 . . . n−1. Available
after a call to initialise.

• error – The final error estimate for the HNC solution, should be less
than tol if converged.

• potential_type – The last used potential type. This is zero if no
potential has been initialised, is equal to charge_type in the case
where dpd_potential was called, and is equal to 10 + use_short

when soft_urpm_potential is called.

The following quantities are available after a call to make_thermodynamics

(which is done automatically by the solver routines unless auto_fns is turned
off). They are also reported by write_thermodynamics.

• press – The virial route pressure βp.

• cf_mf – The mean-field contribution to the virial route compressibility
factor βp/ρ.

• cf_xc – The correlation contribution to the virial route compressibility
factor βp/ρ.

16

• comp – The compressibility ∂(βp)/∂ρ (not to be confused with the
compressibility factor βp/ρ).

• comp_xc – The correlation contribution to the compressibility.

• uv – Internal energy density βU/V (excludes kinetic contribution).

• un – Internal energy per particle βU/N (excludes kinetic contribution).

• un_mf – The mean field contribution to un.

• un_corrn – The correlation contribution to un.

• muex(:) – Chemical potentials, muex(mu) contains βµex
µ (HNC only).

• fvex – Excess free energy density βF ex/V (HNC only).

• fnex – Excess free energy per particle βF ex/N (HNC only).

• d12 – The value of the Wertheim integral in Eq. (51) (only computed
if relevant).

• duv – The value of the first order perturbation integral in Eq. (52) (only
computed if relevant).

5 Examples

5.1 Virial route pressure

As a basic example the following minimalist python code solves the HNC
closure problem for standard one-component DPD at ρ = 3 and A = 25, and
prints the virial route pressure,

from oz import wizard as w

w.initialise()

w.arep[0,0] = A = 25.0

w.dpd_potential()

w.rho[0] = rho = 3.0

w.hnc_solve()

print ’rho =’, rho, ’ A =’, A

print ’pressure =’, w.press

print ’energy density =’, w.uv

with the result

17

Figure 1: HNC pair distribution function and structure factor for standard
DPD at ρ = 3 and A = 25.

rho = 3.0 A = 25.0

pressure = 23.5641475668

energy density = 13.7619524487

The first line imports the wizard of oz and renames it w. The oz package
and the wizard module are automatically generated by f2py. The actual
results from accurate Monte-Carlo simulations are p = 23.71 ± 0.01 and
e = 13.83± 0.01, so the HNC virial route result is in error by ∼ 0.5%.

A virtue of python is the large package library, for instance for graphical
output. The following code uses the matplotlib package to plot the pair
distribution function and structure factor (with a standard normalisation),

import matplotlib.pyplot as plt

from oz import wizard as w

w.initialise()

w.arep[0,0] = A = 25.0

w.dpd_potential()

w.rho[0] = rho = 3.0

w.hnc_solve()

plt.figure(1) # This will be g(r)

imax = int(3.0 / w.deltar)

plt.plot(w.r[0:imax], 1.0 + w.hr[0:imax,0,0])

plt.xlabel(’r’)

plt.ylabel(’$g(r)$’)

plt.figure(2) # This will be S(k)

jmax = int(25.0 / w.deltak)

plt.plot(w.k[0:jmax], w.sk[0:jmax,0,0]/rho)

18

plt.xlabel(’k’)

plt.ylabel(’$S(k)$’)

plt.show()

The result is shown in Fig. 1 (imagine trying to do this in pure fortran!).

5.2 Compressibility route pressure

The following python routine integrates the compressibility along an isotherm
to calculate the compressibility route pressure,

def cr_press(drho):

p_xc = prev = 0.0

n = int(w.rho[0]/drho + 0.5)

w.cold_start = 1

for i in range(n):

w.rho[0] = drho * (i + 1.0)

w.hnc_solve()

p_xc = p_xc + 0.5 * drho * (prev + w.comp_xc)

prev = w.comp_xc

return w.rho[0] + p_xc

Points to note are that a trapezium rule is used for the numerical integration,
and the routine actually integrates the excess compressibility since the ideal
contribution to the pressure is trivially ρ. When the cr_press routine fin-
ishes, the system is in the same state as it started, with the thermodynamics
completely solved. So for example

w.initialise()

w.arep[0,0] = 25.0

w.dpd_potential()

w.rho[0] = 3.0

print ’CR pressure =’, cr_press(0.05)

print ’VR pressure =’, w.press

results in

CR pressure = 22.6662332439

VR pressure = 23.5641475668

Pressures calculated by the two routes differ by about 4% which appears to
be typical for HNC for soft potentials. Also, further investigation reveals the
dependence on δρ is linear and extrapolates to p = 22.31 at δρ→ 0, for ρ = 3
and A = 25. So the error from discretising the isotherm is here < 2%.

19

5.3 Free energy

One can continue in the same vein, to calculate the pressure via the energy
route, but this really involves the calculation of the free energy. This can be
done by coupling constant integration. The basic result can be derived by
differentiating the fundamental expression e−βF =

∫
dΩ e−βV with respect to

a parameter in the potential V . For instance for standard single-component
DPD, ∂F/∂A = 〈V 〉/A where 〈V 〉 ≡ U is the internal energy. This integrates
to

F =

∫ A

0

dA′

A′
〈V 〉A′ (55)

which should be evaluated along an isochore (constant density line). The
following python routine uses this to compute the excess free energy per
particle, f ex

N ,

def fnex1(dA):

fnex_xc = prev = 0.0

n = int(w.arep[0,0]/dA + 0.5)

w.cold_start = 1

for i in range(n):

w.arep[0,0] = dA * (i + 1.0)

w.dpd_potential()

w.hnc_solve()

curr = w.un_xc / w.arep[0,0]

fnex_xc = fnex_xc + 0.5*dA*(prev + curr)

prev = curr

return w.un_mf + fnex_xc

Points to note are again that this implements a trapezium rule, and that the
actual integration is carried out for the correlation contribution for which
U/A vanishes as A→ 0. The mean field contribution to the internal energy
is strictly proportional to A, so it passes unscathed through Eq. (55) to
contribute to the free energy.

For the HNC specifically, we could also calculate f ex
N by integrating µex

along an isotherm, giving a second routine

def fnex2(drho):

fvec = prev = 0.0

n = int(w.rho[0]/drho + 0.5)

w.cold_start = 1

for i in range(n):

w.rho[0] = drho * (i + 1.0)

20

w.hnc_solve()

fvex = fvex + 0.5*drho*(prev + w.muex[0])

prev = w.muex[0]

return fvex / w.rho[0]

Note that integrating µex with respect to ρ generates the excess free energy
density, so the routine divides this ρ to get f ex

N . Both routines leave the
system in the same state as it started. As an example, to test these,

w.initialise()

w.rho[0] = 3.0

w.arep[0,0] = 25.0

w.dpd_potential()

print ’energy fnex =’, fnex1(0.1)

print ’mu fnex = ’, fnex2(0.05)

print ’HNC fnex = ’, w.fnex

(the last of these uses the built-in free energy evaluation for HNC), giving

energy fnex = 5.31588405588

mu fnex = 5.31606130848

HNC fnex = 5.31593361272

We see that all three routes agree to the fourth decimal place, which is a
good test of convergence.

Sections 5.1–5.3 have been coded up as examples.py.

5.4 Further examples

• gw_p_compare.py – calculate the virial route pressure as a function of
density and present the results as (p− ρ)/Aρ2, which can be compared
directly with Fig. 4 of Ref. [7]. The agreement is very good.

• wsg_fig5_compare.py – calculate the free energy difference ∆F be-
tween a system of N − 1 0-particles and one 1-particle, and a pure
system of N 0-particles, as a function of ∆a, where A00 = A11 = 25,
A01 = 25 + ∆a, ρ0 = 3 and ρ1 = 0. This free energy difference was in-
troduced in Ref. [8] and is representative of an effective χ value. Here,
the free energy change is exactly ∆F = µex

1 − µex
0 . The calculation is

performed as a two component problem with the mole fraction of the
second species set to zero. The results can be compared directly with
Fig. 5 of Ref. [8]. The agreement is to within 4%, up to ∆a = 25.

21

• x_dmu_compare.py – an unpublished extension to the above argu-
ment, the quantity ∆F = µex

1 − µex
0 is generated as a function of the

mole fraction x in a mixture where ρ0 = (1 − x)ρ and ρ1 = xρ, for
A00 = A11 = 25, A01 = 30 and ρ = 3 (one cannot have A01 too large
in this calculation otherwise an underlying demixing transition causes
HNC to fail). A plot of ∆F against x reveals nearly linear behaviour,
which is confirmed in Monte-Carlo simulations (unreported). This lin-
ear dependence can be represented by ∆F = χ(1− 2x) where χ is the
Flory χ-parameter. This is the basic reason why DPD is so good at
representing fluid mixtures which fit Flory-Huggins (regular solution)
theory.

• urpm_oneoff.py and urpm_scan.py are a pair of driver routines for
solving the ultrasoft restricted primitive model (URPM) [9], including
the possibility of a neutral solvent species. The first routine can be used
for one-off calculations of structure and thermodynamics at a chosen
state point. The second routine is intended to scan a range of densities
to zero in on the Kirkwood transition between pure exponential and
damped oscillatory behaviour in the tails of the total correlation func-
tions. Both routines are fully provided with command line options and
sensible defaults, via the argparse module. To see the available op-
tions use --help. The option --ncomp selects between the pure URPM
case (--ncomp=2, default) and the solvated URPM case (--ncomp=3).

• urpm_press.py and urpm_targp.py are auxiliary scripts targetted at
the high density URPM phase boundary where HNC still has a solution
even at lB & 100.

• surpm_oneoff.py and surpm_gr.py report various aspects of solutions
for the softened URPM model.

• wertheim_thermo.py, wertheim_solver.py are python scripts, and
wertheim_coex.sh is a shell script, to solve the URPM coexistence
problem using HNC for the high density phase boundary and Wertheim
theory with a softened URPM reference fluid (solved by HNC) for the
low density phase boundary. For more details and sample results see
comments in the scripts.

• driver.py and driver.f90 are older test routines, which are retained
to check agreement between python and pure fortran 90 code.

22

References

[1] K.-C. Ng, “Hypernetted chain solutions for the classical one-component
plasma up to Γ = 7000”, J. Chem. Phys. 61, 2680–2689 (1974).

[2] C. T. Kelley and B. Montgomery Pettitt, “A fast solver for the Ornstein-
Zernike equations”, J. Comp. Phys. 197, 491–501 (2004). Beware typos
in this paper! Note, i and j in the main text are i − 1 and j − 1 in this
paper, and n = N − 1. This paper also suggests that c and e at r = 0 are
evaluated by simple linear extrapolation, c0 = 2c1 − c2 and e0 = 2e1 − e2;
and c and e at r = nδr are zero, cn = en = 0.

[3] L. Vrbka, M. Lund, I. Kalcher, J. Dzubiella, R. R. Netz, and W. Kunz,
“Ion-specific thermodynamics of multicomponent electrolytes: A hybrid
HNC/MD approach”, J. Chem. Phys. 131, 154109 (2009).

[4] J.-P. Hansen and I. R. McDonald, “Theory of simple liquids 3rd edition”
(Academic Press, Amsterdam, 2006).

[5] R. D. Groot, “Electrostatic interactions in dissipative particle dynamics—
simulation of polyelectrolytes and anionic surfactants”, J. Chem. Phys.
118, 11265 (2003).

[6] M. González-Melchor, E. Mayoral, M. E. Velázquez and J. Alejandre,
“Electrostatic interactions in dissipative particle dynamics using the Ewald
sums”, J. Chem. Phys. 125, 224107 (2006).

[7] R. D. Groot and P. B. Warren, “Dissipative particle dynamics: bridging
the gap between atomistic and mesoscopic simulation”, J. Chem. Phys.
107, 4423 (1997).

[8] C. M. Wijmans, B. Smit and R. D. Groot, ‘Phase behavior of monomeric
mixtures and polymer solutions with soft interaction potentials”, J. Chem.
Phys. 114, 7644 (2001).

[9] P. B. Warren, A. Vlasov, L. Anton and A. J. Masters ‘Screening properties
of Gaussian electrolyte models, with application to dissipative particle
dynamics’, J. Chem. Phys. 138, 204907 (2013).

23

